

SLICES Data Management infrastructure services for Experimental Research Reproducibility

SLICES Summer School

13-15 June 2023, Oulu, Finland

SLICES Academy

Outline

- SLICES Initiative on Experimental Research Automation and Reproducibility
 - Reproducible Experimental Research as a Service
- Elements of the Experimental Research Reproducibility
 - Data types produced in SLICES
- FAIR data principles and Metadata Management
- (Prospective) SLICES Data Management Infrastructure

Workshop Materials

<u>https://drive.google.com/drive/folders/1mfoZs3OXOx_Klhy1r6-YVXIW_4MtadFh?usp=sharing</u>

SLICES-RI Experimental Facilities and Testbeds

- OneLab: Cloud Infrastructure for Researchers (LIP6, Sorbonne University)
- 5TONIC Lab (Uni Carlos III of Madrid)
- NITOS testbed 5G (University of Thessaly)
- Open5G Lab, SOPHIA-NODE: Beyond-5G cloud-native network (INRIA)
- imec testbed for networking, cloud, AI and IoT research (Ghent Uni)
- LeonR&Do Lab (COSMOTE, GR)
- SN4I Lab Smart Network for Industry 4.0 (Uni Basque Country)
- IoT Lab (Mandat International, CH)

Open Science Challenges in Experimental Studies

- SLICES is intended to support large-scale experimental studies on modern/future Digital Infrastructure technologies
 - Multi-site, multi-scale, cross-domain, federated, experiment driven, researcher/user centric
- Scientific value of experimental research is in the reproducibility of experiments, sharing and (re)usability of data
- SLICES-RI adds its specifics of implementing Open Science and FAIR (Findable Accessible -Interoperable – Reusable) data principles for experimental studies on the Digital Infrastructure technologies
- (Also) Important questions in experimenting with new technologies and cooperation with industry is how open research and experimental data should be
 - IPR and industrial KnowHow must be protected by Data Governance policies and enforcement
 - General infrastructure management data must be handled with responsibility
 - Compliance with the European Cybersecurity Assurance Act to be considered
 - Compliance with GDPR

Experimental Research Reproducibility as a Service

- SLICES to support experiments reproducibility to comply with Open Science
 - Focus on repeatability and reproducibility with the future support of replicability
- Robust, reproducible experiments
 - Documenting all relevant parameters and environment for experiments
 - Automate the documentation of experiments
 - Well-structured experiment workflow may serve as documentation
- Benefits for research community
 - Reduce amount of work for experimenters to create reproducible experiments
 - Reduce amount of work for other researchers to recreate and re-run experiments
 - Make reproducibility an integral part of experiment design
 - > Automate entire experiment (setup, execution, evaluation)

- Experiment Planning
- Experiment setup, Equipment configuration
- Load (test) data
- Execute workflow
- Collect data
- Evaluate and re-run experiment if needed
- Process/analyse data
- Produce report
- Archive/publish data

Experiment Workflow and Stages

Experimental research stages

- 1. Experiment Planning
- 2. Experiment setup, Equipment configuration
- 3. Load (test) data
- 4. Execute workflow
- 5. Collect data
- 6. Evaluate and re-run experiment if needed
- 7. Process/analyse data
- 8. Produce report
- 9. Archive/publish data

Plain Orchestration Service (POS) by TU Munich

- The plain orchestrating service (pos) provides two components:
 - Testbed controller and Experiment workflow
- The testbed controller takes care of the allocation and management of experimental resources
 - It provides bare-metal access to the experiment nodes
 - Images for the experiment nodes are provided in the form of live Linux images
- Using live images for experiments has two benefits:
 - First, rebooting an experiment node helps reset the system to a well-defined state.
 - Second, testbed users are aware of the non-permanence of their configuration, gently pushing users towards documenting and automating experiment configuration.

Different Types of Data for Different Experimental Studies

Variety of Data produced in SLICES

- General experimental studies and data documentation and publication
 - FAIR (Findable, Accessible, Interoperable, Reusable) data principles are key for experimental data sharing
 - Metadata profiles to be defined for major types of experiments and supported by data and metadata management tools
 - Infrastructure management information to be recorded as experiments environment
 - Research Object (RO) and FAIR Digital Object (being developed by EOSC)
- Data produced for AI/ML algorithms training for smart infrastructure optimisation and management (including energy efficiency, performance, resilience, sustainability)
 - Data modelling and data lineage (staging documenting)
 - AI/ML models serialization and portability
- New Digital Infrastructure architecture elements and design patterns
 - Infrastructure and design patterns
 - Metadata for API description, identification, composability

FAIR Data Principles are realized via Metadata Management (GO FAIR recommendations)

Findable:

- F1 (meta)data are assigned a **globally unique and persistent** identifier;
- F2 data are described with rich metadata;
- F3 metadata clearly and explicitly include the **identifier** of the data it describes;
- F4 (meta)data are **registered or indexed** in a searchable resource;

Interoperable:

- I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- I2. (meta)data use vocabularies that follow FAIR principles;
- I3. (meta)data include qualified references to other (meta)data;

Accessible:

- A1 (meta)data are retrievable by their identifier using a standardized communications protocol;
 - A1.1 the protocol is open, free, and universally implementable;
 - A1.2 the protocol allows for an authentication and authorization procedure, where necessary;
- A2 metadata are accessible, even when the data are no longer available;

Reusable:

- R1 meta(data) are richly described with a plurality of accurate and relevant attributes;
- R1.1 (meta)data are released with a clear and accessible data usage license;
- R1.2 (meta)data are associated with detailed provenance;
- R1.3 (meta)data meet domain-relevant community standards;

FAIR from the technical point of view

- Findable
 - Metadata and PDI infrastructure and tools
 - Registries and handles resolution, API
 - Policies and SLA
- Accessible
 - Repositories and data storage: infrastructure and management
 - Policy and access control: infrastructure and API management
 - Data access protocols
 - Usage Policy and Sovereignty
 - Data protection, compliance, privacy and GDPR
- Interoperable
 - Standard data formats
 - Metadata Registries and API
 - FAIR maturity level and certification
- Reusable
 - Data provenance and lineage
 - Preservation
 - Metadata, PID and API linked or embedded into datasets

Require comprehensive **data infrastructure** to support

- Data Storage and Registries
- Data publication
- Data discovery
- Linked data and data lineage (provenance)
- Multiple datasets access for analysis

Research Objects for Metadata definition

- Data sets: datamodels/schemas, databases, storage
- Experiment
 - Orchestration; configuration; equipment: DUT, test generators, measurement; data storage; data models/metadata
- Workflow: Stages, Operations/conditions, workstations
- Dataflow: Stages, transformations, lineage/provenance, data models

SLICES to provide the Robust Data Infrastructure for Experiment/Data Driven Research

- Experimental data are big, distributed, domain specific, serving specific communities
 - Require effective models and infrastructure services for Research Data Management and secure data sharing
- Support the whole data lifecycle
 - Connected to research/experiment lifecycle or workflow
- Distributed data storage and experimental data(set) repositories
 - Supporting recognized data interoperability standards (data formats and metadata)
 - Eventually certified: RDA endorsed Maturity and Certification practice
 - Interoperability and integration with EOSC as a European Federated Data Infrastructure
- Data management and data curation and quality assurance
 - FAIR data principles and SLICES metadata profiles (interoperable with EOSC)
- Linked data and data discovery using semantic search and knowledge graph
 - PID (Persistent IDentifier) and FDO (FAIR Digital Object) infrastructure (interoperable with EOSC)
- (Trusted) Data exchange and secure transfer protocols

SLICES Experimental Data Lifecycle Model and Dataflow

- Each Data Lifecycle stage experiment, data collection, data analysis, and finally data archiving, works with own data set, which must be linked.
 - All data sets need to be stored and possibly re-used in later processes.
- Many experiments and research require already existing datasets that will be available in SLICES data repositories or can be obtained/discovered in EOSC data repositories

SLICES Experimental Data Lifecycle Model and Dataflow

- Each Data Lifecycle stage experiment, data collection, data analysis, and finally data archiving, works with own data set, which must be linked.
 - All data sets need to be stored and possibly re-used in later processes.
- Many experiments and research require already existing datasets that will be available in SLICES data repositories or can be obtained/discovered in EOSC data repositories

Experimental Data Management Infrastructure

slicespp

DMI layers

- Virtual RI and Researcher Portal
- Experiment Workflow Management
- Data Ingest
- Data Processing
- Storage & Physical Infrastructure

DGvP – Data Governance Policy DMP – Data Management Plan

Data Management Infrastructure Layers

Data Management Infrastructure Layers to separate data management and governance concerns and actors/roles

- Layer 4 Experiment Infrastructure configuration and management
- Layer 3 Experimental data collection/recording
 - Data models, metadata
- Layer 2 Data processing
 - Data analysis, Process/ML models building, portability
- Layer 1 Data Storage, Archiving, Exchange
 - Datasets, metadata publication
 - FAIR Digital Object (FDO), PID registries and gateway/proxy
- Data Management Services and Tools (Data Management Plane)
 - Data Management Plan and Data Quality Assurance, FAIR compliance
 - Metadata registries and tools
 - Data Security and Data protection, Access control, GDPR

New/emerging technologies to consider

- FAIR Data Object (FDO) => SLICES FDO (SFDO)
- Research Object (RO) => Experimental RO (ExRO)
- EOSC Catalog => SLICES Federated Catalog (federated with EOSC)
- PID => SLICES subdomain/SLICES Data Space
- Machine Actionable DMP (maDMP)

Additional information

FAIR is an Overloaded Concept

Findable – Accessible – Interoperable - Reusable

- Primarily, FAIR is (set of) principles for sustainable Research Data Management (RDM) and Open Science
 - Findable Accessible Interoperable Reusable
- FAIR is an initiative
- FAIR is a key policy area of EOSC
- FAIR data management is part of Data Management Plan (DMP) and required by Horizon Europe and many national funding bodies
- FAIR impose a number of requirements to Research Infrastructure
- Existing RIs run dedicated projects on FAIR adoption: ENVRI-FAIR, ELIXIR
- Universities should play important role in FAIR and RDM adoption
 - Still slow adoption at all levels: Bachelor, Master, Doctoral, teachers

EOSC and RDA activities of interest to SLICES-RI

- RDA FAIR maturity WG
 - <u>https://www.rd-alliance.org/groups/fair-data-maturity-model-wg</u>
- RDA FAIR for AI
- RDA machine actionable DMP
 - <u>https://www.rd-alliance.org/groups/active-data-management-plans.html</u>
- RDA Computational reproducibility
 - https://www.rd-alliance.org/computational-reproducibility-what%E2%80%99s-next-rda
- RDA FAIR Digital Object (FDO) and PID infrastructure
 - Special SLICES-PP WP7 focus on the topic of Data Management Infrastructure elements
- EOSC Registry and EOSC Services Portal
- EOSC Interoperability Framework
- EOSC semantic interoperability and Research Object

EOSC-IF is about Data – To support FAIR data sharing

- FAIR Digital Object (FDO) is a key concept
- Technical Interoperability:
 - Artefact Common Protocols and Data Formats
- Semantic Interoperability:
 - Contextual Semantics related to Common Semantic resources
- Organisational Interoperability:
 - Contextual Semantics related to Common process resources
- Legal Interoperability:
 - Contextual licenses related to Common Licenses resources
- FDO is actively promoted by GO FAIR Technical Center and Peter Wittenburg
 - Recent presentation at e-IRG meeting (e-Infrastructure Reflection Group EC policy consulting body)

FAIR Digital Object – A core for EOSC-IF

- In EOSC, a digital object can be research data, software, scientific workflows, hardware designs, protocols, provenance logs, publications, presentations, etc
- FAIR Digital Object Extends Digital Object concept for better FAIRness
- FAIR Digital Object (FDO) is a core building block of EOSC-IF
 - Four interoperability layers applied
 - Requires infrastructure support

FDO (FAIR Digital Object) and PID Infrastructure Requirements

- General requirements include **machine actionability**, technology independence, **persistent binding**, abstraction and structured hierarchical encapsulation, compliance with standards and community policies (as specified in the FDO general requirements G3-G9);
- **FDO** is identified by PID; there are possible multiple PID frameworks defined by PDI scheme, namespaces, ontologies or controlled vocabularies (FDOF1);
- A **PID resolves to a structured record (PID record)** with attributes that are semantically defined within a (data) type ontology (which may be defined for different application or science domains) (FDOF2);
- PID record may include other attributes that are important to characterize specific types of FDO or that are required by applications. Additional attributes must be registered in a *data types registry* (FDOF4);
- Metadata used to describe FDO properties should use standard semantics and *registered schemes* to allow machine readability and actionability (FDOF8-FDOF10).
- FAIR Digital Object Framework, Technical implementation guideline, version 1.02, [online] https://datashare.rzg.mpg.de/s/RTeYZGe3QMgEciH/download?path=%2F&files=FAIR%20Digital%20Object%20Framework-v1-02.pdf

Interoperability and integration with EOSC

- Registration SLICES Provider Profile finalized INRIA is assigned as admin/legal contact
- SLICES Interoperability Framework
 - Continue work started in SLICES-DS (design templates definition with Ansible, Terraform)
 - Define core API for example testbeds/experimental facilities
- Working contacts between EOSC & EGI established but need to be formalized
 - Learning from EGI experience in building their distributed infrastructure
 - Communicating to EGI specific requirements from SLICES

SLICES Composable Services for VRE and Verticals

SLICES Core Services

- Resource discovery and description
- Resource reservation
- Resource configuration
- Resource monitoring and profiling
- User and groups management
- Accounting and billinh
- Dashboard
- Documentation

- Experimental research reproducibility and automation
- Virtual Research Environment (VRE)
- Experimental data and metadata management and sharing (storage, lineage, pre-processing)
- Data Management Infrastructure and services, Data Quality Assurance
- Data Storage and Transfer
- Metadata registry and resolution
- FAIR compliance

Conceptual view of SLICES Interoperability Architecture

- Provides vision and roadmap to achieving interoperability with EOSC
- Some services can be used from EOSC, some services will require API with EOSC services of metadata mapping
- Data Interoperability and sharing is an important component of SLICES-RI
 - Compliance with the Open Science and FAIR data principles
 - Semantic interoperability
 - Supported by robust data infrastructure
 - Data Management and Governance

PRIaaS Architecture Model (2021 - in progress)

Actualisation Platform Components [ref]

- Core Infrastructure Services (IaaS & PaaS)
- Data Services
- Management and Operation
- Development Environment and Tools
 - DevOps
 - Templates and Patterns
- Service Provisioning and Fulfilment
- Datasets and Archives
- Federated Access Infrastructure + IoT Edge and Tenants Management
- Virtual RIs and Portal

[ref] IG1157 Digital Platform Reference Architecture Concepts and Principles v5.0.1, 21 July 2020