

Open Science and Experimental Research Lifecycle Management in SLICES-RI

Yuri Demchenko, University of Amsterdam SLICES Roadshow Norway – 24 January 2023

Outline

- SLICES Research Infrastructure for large scale experimental research
- Open Science and Research Reproducibility
- Experimental research lifecycle and Reproducibility as a Service
 - Experimental research reproducibility study in SLICES-DS/SLICES-PP
- Data Management Infrastructure for full cycle experimental research
 - Variety and Volume of experimental data in SLICES
- Future developments on experimental research reproducibility

SLICES and Open Science

- Open Science is a major initiative by EC and ESFRI
 - Being developed in many projects in H2020 and HE2027
 - Supported by a number of European e-Infrastructure services
 - FAIR (Findable, Accessible, Interoperable, Reusable) data principles commonly accepted for managing research data
- A core objective of the European Open Science Cloud (EOSC) as a federated scientific data infrastructure
- SLICES will benefit and build on the current best practices, recommendations and tools, use services provided by Open Science platforms
- SLICES is actively involved in the EOSC activity
 - Starting from liaison with EOSC Working Groups activities in SLICES-DS to contribution to ongoing EOSC projects in SLICES-PP
 - SLICES Interoperability Framework and services integration with EOSC and Open Science

Open Science Challenges in Experimental Studies

- SLICES is intended to support large-scale experimental studies on modern/future Digital Infrastructure technologies
 - Multi-site, cross-domain, federated, experiment driven researcher/user centric
- Scientific value of experimental research is in the reproducibility of experiments, sharing and (re)usability of data
- SLICES-RI brings its specific of implementing Open Science and FAIR data principles in experimental studies on the Digital Infrastructure technologies
- Important questions in experimenting with new technologies and industry is how open research and experimental data should be
 - IPR and industrial secrets must be protected by Data Governance policies and enforcement
 - General infrastructure management data must be handled with responsibility
 - Compliance with the European Cybersecurity Assurance Act to be considered

Experimental Research Reproducibility: Main tasks

- Experiment description and automation, including reproducible description and experiment workflow management
- Experiment management infrastructure
- Experimental data/metadata management and FAIR data principles compliance
- Federated Data Management Infrastructure to support experimental research and SLICES infrastructure services operation

3-stages process according to ACM [ref]: **Repeatability:** Same team, same experiment setup **Reproducibility:** Different team, same experiment setup **Replicability (portability):** Different team, different experiment setup

Experimental Research Reproducibility: Study in SLICES-DS

- Reproducible experiment description and orchestration
 - Git and CI/CD iterative experiment design and automation and deployment
 - Jupyter Notebook experiment description and orchestration
 - Common Workflow Language (CWL) for experiment management
- The plain orchestration service (pos) by Technical University Munich
 - Testbed management system and experiment workflow
- Experiment infrastructure deployment and management
 - Cloud native tools using Git CI/CD tools (leveraging DevOps tools and methodology)
 - General infrastructure automation tools Ansible, Terraform, others
- Cloud native Platform Research Infrastructure as a Service (PRIaaS) for full infrastructure, user and data services provisioning

Experiment description: Reproducibility and Portability

- GitHub and GitHub Actions (CI/CD tools)
 - Highly flexible but requires programming and full infrastructure management
 - However, can rely on well developed CI/CD tools
- Jupyter Notebook (Python based) Popular but limited portability
 - Very popular but often limited to specific experiment environment and infrastructure platform
- Common Workflow Language (CWL)
 - Portable Experiment Description
 - Requires workflow execution environment and infrastructure provisioning platform

Jupyter Notebook for Experiment Automation and Workflow Description

- Build on other projects experience of using Jupiter Notebooks for experiments automation
 - Grid5000 large-scale infrastructure for experiment-driven research
 - Notebook as experiment drivers and experiment payload
 - Notebook for post-processing and exploratory programming
 - Fed4FIRE+ federation of experimental facilities for Future Internet research
 - Majority testbeds are using Notebooks
- Chameleon (CHI Cloud++) OpenStack based cloud platform to support experimental workflow for Computer Science systems research (US based)
 - Jupyter Notebook integration and experiments management via JupyterLab portal
- Plain Orchestration Services (pos) by Technical University Munich (TUM)

Common Workflow Language (CWL)

- Provides portable platform independent data handling workflow description
 - YAML based
- Requires workflow execution environment
 - Apache AirFlow, StreamFlow, Toil
- Galaxy workflow management and execution platform
 - galaxy.tools.cwl package for Galaxy open-source platform for FAIR data analysis
 - Run code in interactive environments (RStudio, Jupyter, ...) along with other tools or workflows
 - Manage data by sharing and publishing results, workflows, and visualizations
 - Ensure reproducibility by capturing the necessary information to repeat and understand data analyses
 - Recognised as cross EOSC platform supporting FAIR data lifecycle

Example: Ansible playbook and CWL workflow

Get data Get data Workflow designed in Galaxy

cwlVersion: v1.0	sort field:
class: Workflow	default: 2 # which column to sort by
	<pre>out: [sorted file]</pre>
# The inputs of the workflow as a whole	
" # These are referenced in the first workflow step	# the 4th step creates a description of the data
inputs:	describe data:
AWS ACCESS KEY ID: string	
AWS SECRET ACCESS KEY: string	in:
table name: string	<pre># the input is the sorted CSV file from the</pre>
	previous step
# In the following list the workflow steps are defined	<pre>csv_file: sort_csv/sorted_file</pre>
steps:	out: [data_description]
# the first step, called "get_data" gets the sensor	
data from the DynamoDB table	# the 5th step generates a line plot
get_data:	generate_graph:
<pre>run:/tools/get-dynamodb-data.cwl # the CWL tool</pre>	run:/tools/graph-csv.cwl
is defined in this file	in:
# the following list defines the inputs to the CWL	# the input is also the sorted CSV file from the
tool	3rd step
in:	<pre>csv_to_plot: sort_csv/sorted_file</pre>
AWS_ACCESS_KEY_ID: AWS_ACCESS_KEY_ID	out: [plot]
AWS_SECRET_ACCESS_KEY: AWS_SECRET_ACCESS_KEY	
table_name: table_name	# the outputs of the workflow as a whole are the sorted
# the output of this workflow step is defined as	CSV file from the third
"dynamodb_data"	# step, the data description from the 4th step and the
out: [dynamodb_data]	line chart from the 5th
;	# step
# the second step of the workflow converts the sensor	outputs:
data from JSON to CSV	data_csv:
convert_to_csv:	type: File
<pre>run:/tools/json-to-csv.cwl</pre>	<pre>outputSource: sort_csv/sorted_file</pre>
in:	description:
<pre># the input is the output of the previous step,</pre>	type: File
"dynamodb_data"	<pre>outputSource: describe_data/data_description</pre>
json_file: get_data/dynamodb_data	plot:
<pre>out: [csv_file]</pre>	type: File
	<pre>outputSource: generate_graph/plot</pre>
# the third step sorts the sensor data in CSV format	
sort_csv:	
<pre>run:/tools/sort.cwl</pre>	
in:	

file to sort: convert to csv/csv file

SLICES Experimental Research Reproducibility and Data Management

#!/usr/bin/env cwl-runner

Experimental Research Reproducibility as a Service

- SLICES to support experiments reproducibility to comply with Open Science
 - Focus on repeatability and reproducibility with the future support of replicability
- Robust, reproducible experiments
 - Documenting all relevant parameters and environment for experiments
 - Automate the documentation of experiments
 - Well-structured experiment workflow may serve as documentation
- Benefits for research community
 - Reduce amount of work for experimenters to create reproducible experiments
 - Reduce amount of work for other researchers to recreate and re-run experiments
 - Make reproducibility an integral part of experiment design
 - Automate entire experiment (setup, execution, evaluation)

= slices RI

Experimental research stages

- Experiment Planning
- Experiment setup,
 Equipment configuration
- Load (test) data
- Execute workflow
- Collect data
- Evaluate and re-run experiment if needed
- Process/analyse data
- Produce report
- Archive/publish data

Experiment Workflow and Stages

SLICES Data Management Infrastructure (supporting full research lifecycle)

Experimental research stages

- 1. Experiment Planning
- 2. Experiment setup, Equipment configuration
- 3. Load (test) data
- 4. Execute workflow
- 5. Collect data
- 6. Evaluate and re-run experiment if needed
- 7. Process/analyse data
- 8. Produce report
- 9. Archive/publish data

SLICES Roadshow 2023

SLICES Experimental Research Reproducibility and Data Management

SLICES to provide the Robust Data Infrastructure for Experiment/Data Driven Research

- Experimental data are big, distributed, domain specific, serving specific communities
 - Require effective models and infrastructure services for Research Data Management and secure data sharing
- Support the whole data lifecycle
 - Connected to research/experiment lifecycle or workflow
- Distributed data storage and experimental data(set) repositories
 - Supporting recognized data interoperability standards (data formats and metadata)
 - Eventually certified: RDA endorsed Maturity and certification practice
 - Interoperability and integration with EOSC as Federated data infrastructure
- Data management and data curation and quality assurance
 - FAIR data principles and SLICES metadata profiles (interoperable with EOSC)
- Linked data and data discovery using semantic search and knowledge graph
 - PID (Persistent IDentifier) and FDO (FAIR Digital Object) infrastructure (interoperable with EOSC)
- (Trusted) Data exchange and secure transfer protocols

SLICES Experimental Data Lifecycle Model and Dataflow

- Each Data Lifecycle stage experiment, data collection, data analysis, and finally data archiving, works with own data set, which must be linked.
 - All data sets need to be stored and possibly re-used in later processes.
- Many experiments and research require already existing datasets that will be available in SLICES data repositories or can be obtained/discovered in EOSC data repositories

SLICES Roadshow 2023

Different Types of Data for Different Experimental Studies

SLICES Experimental Research Reproducibility and Data Management

Variety of Data produced in SLICES

- General experimental studies and data documentation and publication
 - FAIR (Findable, Accessible, Interoperable, Reusable) data principles are key for experimental data sharing
 - Metadata profiles to be defined for major types of experiments and supported by data and metadata management tools
 - Infrastructure management information to be recorded as experiments environment
 - Research Object (RO) and FAIR Digital Object (being developed by EOSC)
- Data produced for AI/ML algorithms training for smart infrastructure optimisation and management (including energy efficiency, performance, resilience, sustainability)
 - Data modelling and data lineage (staging documenting)
 - AI/ML models serialization and portability
- New Digital Infrastructure architecture elements and design patterns
 - Infrastructure and design patterns
 - Metadata for API description, identification, composability

Data Management Infrastructure Layers

Data Management Infrastructure Layers to separate data management and governance concerns and actors/roles

- Layer 4 Experiment Infrastructure configuration and management
- Layer 3 Experimental data collection/recording
 - Data models, metadata
- Layer 2 Data processing
 - Data analysis, Process/ML models building, portability
- Layer 1 Data Storage, Archiving, Exchange
 - Datasets, metadata publication
- Data Management Services and Tools (Data Management Plane)
 - Data Management Plan and Data Quality Assurance, FAIR compliance
 - Metadata registries and tools
 - Data Security and Data protection, GDPR

Experimental Data Management Infrastructure

DGvP – Data Governance Policy DMP – Data Management Plan

SLICES Roadshow 2023

DMI layers

- Virtual RI and Researcher Portal
- Experiment Workflow Management
- Data Ingest
- Data Processing
- Storage & Physical Infrastructure

Further tasks for Experimental Research Automation in SLICES-RI

- Reproducible experimental research description and infrastructure provisioning tools
 - Platform RI as a Service (PRIaaS) for distributed experimental infrastructure provisioning for virtual researcher teams
 - Adopting Research Object concept (by EOSC and Reliance project)
- Federated multilayer experimental data management infrastructure
 - Experiment data collection, processing and storage
 - Data management policy definition and FAIR compliance
- Metadata as cornerstone for reproducibility of experimental research
 - Metadata profiles definition, extension to support infrastructure management information CIM, MIB, GLUE schemas
- EOSC compliance, interoperability and integration
 - Basis for the future cooperation with European RIs and contribution to EOSC development

Questions and invitation to cooperation

www.slices-ri.eu

SLICES Experimental Research Reproducibility and Data Management www.slices-ri.eu