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Abstract—Big Data are becoming a new technology focus both in 

science and in industry. This paper discusses the challenges that 

are imposed by Big Data on the modern and future Scientific 

Data Infrastructure (SDI). The paper discusses a nature and 

definition of Big Data that include such features as Volume, 

Velocity, Variety, Value and Veracity. The paper refers to 

different scientific communities to define requirements on data 

management, access control and security. The paper introduces 

the Scientific Data Lifecycle Management (SDLM) model that 

includes all the major stages and reflects specifics in data 

management in modern e-Science. The paper proposes the SDI 

generic architecture model that provides a basis for building 

interoperable data or project centric SDI using modern 

technologies and best practices. The paper explains how the 

proposed models SDLM and SDI can be naturally implemented 

using modern cloud based infrastructure services provisioning 

model and suggests the major infrastructure components for Big 

Data Infrastructure.  

Keywords- Big Data Science, Scientific Data Infrastructure 

(SDI), Scientific Data Lifecycle Management (SDLM), Cloud 

Infrastructure Service, Big Data Infrastructure. 

I. INTRODUCTION 

Big Data technologies are becoming a current focus and a 
new “buzz-word” both in science and in industry. Emergence 
of Big Data or data centric technologies indicates the beginning 
of a new form of the continuous technology advancement that 
is characterized by overlapping technology waves related to 
different aspects of the human activity from production and 
consumption to collaboration and general social activity. In this 
context data intensive science plays key role. 

Big Data are becoming related to almost all aspects of 
human activity from just recording events to research, design, 
production and digital services or products delivery, to the final 
consumer. Current technologies such as Cloud Computing and 
ubiquitous network connectivity provide a platform for 
automation of all processes in data collection, storing, 
processing and visualization.  

Modern e-Science infrastructures allow targeting new large 
scale problems whose solution was not possible before, e.g. 
genome, climate, global warming. e-Science typically produces 
a huge amount of data that need to be supported by a new type 
of e-Infrastructure capable to store, distribute, process, 
preserve, and curate these data [1, 2]: we refer to this new 
infrastructures as  Scientific Data e-Infrastructure (SDI). 

In e-Science, the scientific data are complex multifaceted 

objects with the complex internal relations, they are becoming 

an infrastructure of their own and need to be supported by 

corresponding physical or logical infrastructures to store, 

access and manage these data. 
The emerging SDI should allow different groups of 

researchers to work on the same data sets, build their own 
(virtual) research and collaborative environments, safely store 
intermediate results, and later share the discovered results. New 
data provenance, security and access control mechanisms and 
tools will allow researchers to link their scientific results with 
the initial data (sets) and intermediate data to allow future re-
use/re-purpose of data, e.g. with the improved research 
technique and tools.  

This paper analyses new challenges imposed to modern e-
Science infrastructures by the emerging Big Data technologies; 
it proposes a general approach and architecture solutions that 
constitute a new Scientific Data Lifecycle Management 
(SDLM) model and the generic SDI architecture model that 
provides a basis for heterogeneous SDI components 
interoperability and integration, in particular based on cloud 
infrastructure technologies. 

This paper is primarily focused on SDI, however provides 
analysis of the big data nature in both e-Science and industry, 
analyses their commonalities and difference, discussing also 
possible cross-fertilisation between two domains.  

This paper continues the authors’ work on defining the Big 
Data infrastructure for e-Science initially presented in the paper 
[3] and significantly extends it with new results and wider 
scope to investigate relations between Big Data technologies in 
e-Science and industry. With long tradition of working with 
constantly increasing volume of data, modern science can offer 
industry the scientific analysis methods, while industry can 
bring Big Data technologies and tools to wider public. 

The paper is organised as follows. Section II looks into Big 
Data definition and Big Data nature in industry and science 
analysing also the main drivers for the Big Data technology 
development. Section II gives an overview of the main research 
communities and summarizes requirement to future SDI. 
Section IV discusses challenges to data management in Big 
Data Science, including SDLM discussion. Section V 
introduces the proposed e-SDI architecture model that is 
intended to answer the future big data challenges and 
requirements. Section VI discusses SDI implementation using 
cloud technologies. Section VII discusses security and trust 
related issues in handling data and summarises specific 
requirements  to access control infrastructure for modern and 
future SDI. 



II. BIG DATA DEFINITION AND ANALYSIS 

A. Big Data Nature in e-Science and Industry 

Science has been traditionally dealing with challenges to 

handle large volume of data in complex scientific research 

experiments. Scientific research typically includes collection 

of data in passive observation or active experiments which aim 

to verify one or another scientific hypothesis. Scientific 

research and discovery methods typically are based on the 

initial hypothesis and a model which can be refined based on 

the collected data. The refined model may lead to a new more 

advanced and precise experiment and/or the previous data re-

evaluation. Another distinctive feature of the modern scientific 

research is that it suggests wide cooperation between 

researchers to challenge complex problems and run complex 

scientific instruments. In industry, private companies will not 

share data or expertise. When dealing with data, companies 

will intend always keep control over their information assets. 

They may use shared third party facilities, like clouds, but 

special measures need to be taken to ensure data protection, 

including data sanitization. It might be also a case that 

companies can use shared facilities only for proof of concept 

and do production data processing at private facilities. In this 

respect, we need to accept that science and industry can't be 

done in the same way, and consequently this will be reflected 

in a way how they can interact and how the Big Data 

infrastructure and tools can be built. 

With the digital technologies proliferation into all aspects 

of business activities and emerging Big Data technologies the 

industry is entering a new playground when it needs to use 

scientific methods to benefit from the possibility to collect and 

mine data for desirable information, such as market prediction, 

customer behavior predictions, social groups activity 

predictions, etc.  

A number of discussions and blog articles [4, 5, 6] suggest 

that the Big Data technologies need to adopt scientific 

discovery methods that include iterative model improvement 

and collection of improved data, re-use of collected data with 

improved model.  

We can quote here a blog article by Mike Gualtieri from 

Forrester [7, 8, 9]:“Firms increasingly realize that [big data] 

must use predictive and descriptive analytics to find 

nonobvious information to discover value in the data. 

Advanced analytics uses advanced statistical, data mining and 

machine learning algorithms to dig deeper to find patterns that 

you can’t see using traditional BI (Business Intelligence) tools, 

simple queries, or rules.” 

B. 5 Vs of Big Data 

Despite the “Big Data” became a new buzz-word, there is 

no consistent definition for Big Data, nor detailed analysis of 

this new emerging technology. Most discussions are going 

now in blogosphere in which however the most significant 

features and incentives of the Big Data are identified and 

became commonly accepted. In this section we will attempt to 

summarise available definitions and propose a consolidated 

view on the generic Big Data features that would help us to 

define requirements to supporting Big Data infrastructure and 

in particular Scientific Data Infrastructure. 

As a starting point, we can refer to the simple definition 

given in [10]: “Big Data: a massive volume of both structured 

and unstructured data that is so large that it's difficult to 

process using traditional database and software techniques.”  

Related definition of the data-intensive science is given in 

the book “The Fourth Paradigm: Data-Intensive Scientific 

Discovery” by the computer scientist Jim Gray [11]: “The 

techniques and technologies for such data-intensive science 

are so different that it is worth distinguishing data-intensive 

science from computational science as a new, fourth paradigm 

for scientific exploration.”  

In a number of discussion, blogposts and articles Big Data 

are attributed to have such characteristics as Volume, 

Velocity, and Variety called “3 Vs of Big Data”. Based on our 

analysis and concurring with some other articles [5, 6, 12] we 

intend to propose wider definition of Big Data as 5 Vs: 

Volume, Velocity, Variety and additionally Value and 

Veracity.  

Figure 1 below illustrates the features related to 5 Vs 

which we analyse below. 

 

 
Figure 1. 5 Vs of Big Data 

1) Volume 

Volume is the most important and distinctive feature of 

Big Data which impose additional and specific requirements to 

all traditional technologies and tools currently used.   

In e-Science, growth of data amount is caused by 

advancements in both scientific instruments and SDI. In many 

areas the trend is actually to include data collections from all 

observed events, activities and sensors what became possible 

and is important for social activities and social sciences. 

Big Data volume includes such features as size, scale, 

amount, dimension for tera- and exascale data recording either 

data rich processes, or collected from many transactions and 

stored in individual files or databases – all needs to be 

accessible, searchable, processed and manageable. 

Two examples from e-Science give also different 

characters of data and also different processing requirements, 

such as: 

Large Hadron Collider (LHC) produces in average 5 PB 

data a month  that are generated in a number of short collisions 



that make them unique events, The collected data are filtered, 

stored and extensively searched for single events that may 

confirm a scientific hypothesis. 

LOFAR (Low Frequency Array) is a radio telescope that 

collects about 5 PB every hour, however the data are 

processed by correlator and only correlated data are stored. 

In industry, global services providers such as Google, 

Facebook, Twitter are producing, analyzing and storing data in 

huge amount as their regular activity/production services. 

Although some of their tools and processes are proprietary, 

they actually prove the feasibility of solving Big Data 

problems at the global scale and significantly push the 

development of the Open Source Big Data tools. 

2) Velocity 

Big Data are often generated at high speed, including also 

data generated by arrays of sensors or multiple events, and 

need to be processed in real-time, near real-time or in batch, or 

as streams (like in case of visualisation).  

As an example, LHC ATLAS detector [http://atlas.ch/] 

uses about 80 readout channels and collects up to 1PB of 

unfiltered data in second which are reduced to approx. 100MB 

per second. This should record up to 40 million collision 

events per second.  

Industry can also provide numerous examples when data 

registration, processing or visualization impose similar 

challenges. 

3) Variety 

Variety deals with the complexity of big data and 

information and semantic models behind these data. This is 

resulted in data collected as structured, unstructured, semi-

structured, and a mixed data. Data variety imposes new 

requirements to data storage and database design which should 

dynamic adaptation to the data format, in particular scaling up 

and down. 

Data variety will in particular increase when biological, 

human and societal systems will become a subject of closer 

research and monitoring. An example of the latter is urban 

environment that requires operating, monitoring and evolving 

of numerous processes, individuals and associations. 

Adopting data technologies in traditionally non-computer 

oriented areas such as psychology and behavior research, 

history, archeology will generate especially rich data sets. 

4) Value  

Value is an important feature of the data which is defined 

by the added-value that the collected data can bring to the 

intended process, activity or predictive analysis/hypothesis. 

Data value will depend on the events or processes they 

represent such as stochastic, probabilistic, regular or random. 

Depending on this the requirements may be imposed to collect 

all data, store for longer period (for some possible event of 

interest), etc. In this respect data value is closely related to the 

data volume and variety. 

5) Veracity 

Veracity dimension of Big Data includes two aspects: data 

consistency (or certainty) what can be defined by their 

statistical reliability; and data trustworthiness that is defined 

by a number of factors including data origin, collection and 

processing methods, including trusted infrastructure and 

facility. 

Big Data veracity ensures that the data used are trusted, 

authentic and protected from unauthorised access and 

modification. The data must be secured during the whole their 

lifecycle from collection from trusted sources to processing on 

trusted compute facilities and storage on protected and trusted 

storage facilities.  

The following aspects define and need to be addressed to 

ensure data veracity: 

 Integrity of data and linked data (e.g., for complex 

hierarchical data, distributed data) 

 Data authenticity and (trusted) origin  

 Identification of both data and source 

 Computer and storage platform trustworthiness 

 Availability and timeliness 

 Accountability and Reputation 

Data veracity relies entirely on the security infrastructure 

deployed and available from the Big Data infrastructure. 

III. GENERAL REQUIREMENTS TO BIG DATA E-SCIENCE 

INFRASTRUCTURE 

A. Paradigm change in Big Data e-Science  

Big Data Science is becoming a new technology driver and 
requires re-thinking a number of infrastructure components, 
solutions and processes to address the following general 
challenges [2, 3]: 

 Exponential growth of data volume produced by different 
research instruments and/or collected from sensors  

 Need to consolidate e-Infrastructures as persistent research 
platforms to ensure research continuity and cross-
disciplinary collaboration, deliver/offer persistent services, 
with adequate governance model.  

The recent advancements in the general ICT and big data 
technologies facilitate the paradigm change in modern e-
Science that is characterized by the following features: 

 Automation of all e-Science processes including data 
collection, storing, classification, indexing and other 
components of the general data curation and provenance. 

 Transformation of all processes, events and products into 
digital form by means of multi-dimensional multi-faceted 
measurements, monitoring and control; digitising existing 
artifacts and other content. 

 Possibility to re-use the initial and published research data 
with possible data re-purposing for secondary research 

 Global data availability and access over the network for 
cooperative group of researchers, including wide public 
access to scientific data. 

 Existence of necessary infrastructure components and 
management tools that allow fast infrastructures and 
services composition, adaptation and provisioning on 
demand for specific research projects and tasks. 

 Advanced security and access control technologies that 
ensure secure operation of the complex research 
infrastructures and scientific instruments and allow 
creating trusted secure environment for cooperating groups 
and individual researchers  



The future SDI should support the whole data lifecycle and 
explore the benefit of the data storage/preservation, aggregation 
and provenance in a large scale and during long/unlimited 
period of time. Important is that this infrastructure must ensure 
data security (integrity, confidentiality, availability, and 
accountability), and data ownership protection. With current 
needs to process big data that require powerful computation, 
there should be a possibility to enforce data/dataset policy that 
they can be processed on trusted systems and/or complying 
other requirements. Researchers must trust the SDI to process 
their data on SDI facilities and be ensured that their stored 
research data are protected from non-authorised access. Privacy 
issues are also arising from distributed remote character of SDI 
that can span multiple countries with different local policies. 
This should be provided by the Access Control and Accounting 
Infrastructure (ACAI) which is an important component of SDI 
[13, 14]. 

B. Research communities and specific SDI requirements 

A short overview of some research infrastructures and 

communities, in particular the ones defined for the Europe 

Research Area (ERA) [3] allows us to analyse specific 

requirement for future SDIs to address Big Data challenges.  
Existing studies of European e-Infrastructures analyze the 

scientific communities practices and requirements; examples 
are those undertaken by the SIENA Project [15], EIROforum 
Federated Identity Management Workshop [14], European Grid 
Infrastructure (EGI) Strategy Report [16], UK Future Internet 
Strategy Group Report [17].  

The High Energy Physics community represents a large 
number or researchers, unique expensive instruments, huge 
amount of data that are generated and need to be processed 
continuously. This community has already the operational 
Worldwide Large Hadron Collider Grid (WLCG) [18] 
infrastructure to manage and access data, protect their integrity 
and support the whole scientific data lifecycle. WLCG 
development was an important step in the evolution of 
European e-Infrastructures that currently serves multiple 
scientific communities in Europe and internationally. The EGI 
cooperation [16] manages European and worldwide 
infrastructure for HEP and other communities. 

Material science, analytical and low energy physics (proton, 
neutron, laser facilities) is characterized by short projects, 
experiments and consequently highly dynamic user 
community. It requires highly dynamic supporting 
infrastructure and advanced data management infrastructure to 
allow wide data access and distributed processing. 

Environmental and Earth science community and projects 
target regional/national and global problems. They collect huge 
amount of data from land, sea, air and space and require ever 
increasing amount of storage and computing power. This SDI 
requires reliable fine-grained access control to huge data sets, 
enforcement of regional issues, policy based data filtering (data 
may contain national security related information), while 
tracking data use and keeping data integrity.  

Biological and Medical Sciences (also defined as Life 
sciences) have a general focus on health, drug development, 
new species identification, new instruments development. They 
generates massive amount of data and new demand for 
computing power, storage capacity, and network performance 
for distributed processes, data sharing and collaboration. 

Biomedical data (healthcare, clinical case data) are privacy 
sensitive data and must be handled according to the European 
policy on Personal Data processing [19].  

Social Science and Humanities communities and projects 
are characterized by multi-lateral and often global 
collaborations between researchers from all over the world that 
need to be engaged into collaborative groups/communities and 
supported by collaborative infrastructure to share data, 
discovery/research results and cooperatively evaluate results. 
The current trend to digitize all currently collected physical 
artifacts will create in the near future a huge amount of data 
that must be widely and openly accessible. 

C. General SDI Requirements 

From the overview we just gave we can extract the 
following general infrastructure requirements to SDI for 
emerging Big Data Science: 

 Support long running experiments and large data volumes 
generated at high speed 

 Data integrity, confidentiality, accountability 

 Support for long running experiments and large data 
volumes generated at high speed 

 Multi-tier inter-linked data distribution and replication 

 On-demand infrastructure provisioning to support data sets 
and scientific workflows, mobility of data-centric 
scientific applications 

 Support of virtual scientists communities, addressing 
dynamic user groups creation and management, federated 
identity management 

 Trusted environment for data storage and processing 

 Support for data integrity, confidentiality, accountability 

 Policy binding to data to protect privacy, confidentiality 
and IPR 

IV. DATA MANAGEMENT IN BIG DATA SCIENCE 

Emergence of computer aided research methods is 
transforming the way research is done and scientific data are 
used. The following types of scientific data are defined [13]: 

 Raw data collected from observation and from experiment 
(according to an initial research model)  

 Structured data and datasets that went through data 
filtering and processing (supporting some particular formal 
model) 

 Published data that supports one or another scientific 
hypothesis, research result or statement 

 Data linked to publications to support the wide research 
consolidation, integration, and openness. 

Once the data is published, it is essential to allow other 
scientists to be able to validate and reproduce the data that they 
are interested in, and possibly contribute with new results. 
Capturing information about the processes involved in 
transformation from raw data up until the generation of 
published data becomes an important aspect of scientific data 
management. Scientific data provenance becomes an issue that 
also needs to be taken into consideration by SDI providers [20].   

Another aspect to take into consideration is to guarantee 
reusability of published data within the scientific community. 
Understanding semantic of the published data becomes an 
important issue to allow for reusability, and this had been 
traditionally been done manually. However, as we anticipate 
unprecedented scale of published data that will be generated in 



Big Data Science, attaching clear data semantic becomes a 
necessary condition for efficient reuse of published data. 
Learning from best practices in semantic web community on 
how to provide a reusable published data, will be one of 
consideration that will be addressed by SDI. 

Big data are typically distributed both on the collection side 
and on the processing/access side: data need to be collected 
(sometimes in a time sensitive way or with other environmental 
attributes), distributed and/or replicated. Linking distributed 
data is one of the problems to be addressed by SDI. 

The European Commission’s initiative to support Open 
Access to scientific data from publicly funded projects suggests 
introduction of the following mechanisms to allow linking 
publications and data [21, 22]:  

 PID - persistent data ID  

 ORCID – Open Researcher and Contributor Identifier 
[23]. 

The required new approach to data management and 
handling in e-Science is reflected in the Scientific Data 
Lifecycle Management (SDLM) model (see Figure 2) we as a 
result of analysis of the existing practices in different scientific 
communities. Our proposed model is compliant with the data 
lifecycle study results presented in [24].  

The generic scientific data lifecycle includes a number of 
consequent stages: research project or experiment planning; 
data collection; data processing; publishing research results; 
discussion, feedback; archiving (or discarding). 

 

 
Figure 2. Scientific Data Lifecycle Management in e-Science 

 
New SDLM requires data storage and preservation at all 

stages what should allow data re-use/re-purposing and 
secondary research on the processed data and published results. 
However, this is possible only if the full data identification, 
cross-reference and linkage are implemented in SDI. Data 
integrity, access control and accountability must be supported 
during the whole data during lifecycle. Data curation is an 
important component of the discussed SDLM and must also be 
done in a secure and trustworthy way. 

Support data security and access control to scientific data 
during their lifecycle: data acquisition (experimental data), 
initial data filtering, specialist processing; research data storage 
and secondary data mining, data and research information 
archiving. 

V. PROPOSED SDI ARCHITECTURE MODEL 

We also propose the SDI Architecture for e-Science (e-
SDI) as illustrated in Figure 3. This model contains the 
following layers: 

Layer D1: Network infrastructure layer represented by the 
general purpose Internet infrastructure and dedicated network 
infrastructure 

Layer D2: Datacenters and computing resources/facilities 
Layer D3: Infrastructure virtualisation layer that is 

represented by the Cloud/Grid infrastructure services and 
middleware supporting specialised scientific platforms 
deployment and operation 

Layer D4: (Shared) Scientific platforms and instruments 
specific for different research areas 

Layer D5: Federation and Policy layer that includes 
federation infrastructure components, including policy and 
collaborative user groups support functionality. 

Layer D6: Scientific applications and user portals/clients 
Note: “D” prefix denotes relation to data infrastructure. 

 
 

Figure 3. The proposed SDI architecture model 

 
We define also the three cross-layer planes: Operational 

Support and Management System; Security plane; and 
Metadata and Lifecycle Management. • 

The dynamic character of SDI and its support of distributed 
multi-faceted communities are guaranteed by the dedicated 
layers: D3 – Infrastructure Virtualisation layer that typically 
uses modern cloud technologies; and D5 – Federation and 
policy layer that incorporates related federated infrastructure 
management and access technologies [13, 25, 26]. Introducing 
the Federation and Policy layer reflects current practice in 
building and managing complex SDIs (and also enterprise 
infrastructures) and allows independently managed 
infrastructures to share resources and support the inter-
organisational cooperation. 

Network infrastructure is presented as a separate lower 
layer in e-SDI. Network aspects in Big Data are becoming even 
more important than it was e.g. with Computer Grids and 
clouds. Although the dilemma of moving data to computing 
facilities or vice versa moving computing to data location can 
be solved in some particular cases, processing highly 
distributed data on MPP (Massively Parallel Processing) 
infrastructures will require a special design of the internal MPP 
network infrastructure. The authors refer to their long time 
research on high speed optical networking and experience of 
building optical network infrastructure for e-Science [27, 28].  



VI. CLOUD BASED INFRASTRUCTURE SERVICES FOR SDI 

Figure 4 illustrates the typical e-Science or enterprise 
collaborative infrastructure that is created on demand and 
includes enterprise proprietary and cloud based computing and 
storage resources, instruments, control and monitoring system, 
visualization system, and users represented by user clients and 
typically residing in real or virtual campuses.  

The main goal of the enterprise or scientific infrastructure is 
to support the enterprise or scientific workflow and operational 
procedures related to processes monitoring and data processing. 
Cloud technologies simplify the building of such infrastructure 
and provision it on-demand. Figure 3 illustrates how an 
example enterprise or scientific workflow can be mapped to 
cloud based services and later on deployed and operated as an 
instant inter-cloud infrastructure. It contains cloud 
infrastructure segments IaaS (VR3-VR5) and PaaS (VR6, 
VR7), separate virtualised resources or services (VR1, VR2), 
two interacting campuses A and B, and interconnecting them 
network infrastructure that in many cases may need to use 
dedicated network links for guaranteed performance. 

 

 
 

Figure 4. From scientific workflow to cloud based infrastructure. 

Efficient operation of such infrastructure will require both 
overall infrastructure management and individual services and 
infrastructure segments to interact between themselves. This 
task is typically out of scope of the existing cloud service 
provider models but will be required to support perceived 
benefits of the future e-SDI. These topics are a subject of 
another research we did on the InterCloud Architecture 
Framework [29, 30]. 

Besides the general cloud base infrastructure services 
(storage, compute, infrastructure/VM management) the 
following specific applications and services will be required to 
support Big Data and other data centric applications [31]: 

 Cluster services 

 Hadoop related services and tools 

 Specialist data analytics tools (logs, events, data mining, 
etc.) 

 Databases/Servers SQL, NoSQL 

 MPP (Massively Parallel Processing) databases 

 Big Data Management tools 

 Registries, indexing/search, semantics, namespaces 

 Security infrastructure (access control, policy enforcement, 
confidentiality, trust, availability, privacy) 

 Collaborative environment (groups management) 
Big Data analytics tools are currently offered by the major 

cloud services providers such as: Amazon Elastic MapReduce 
and Dynamo [32], Microsoft Azure HDInsight [33], IBM Big 
Data Analytics [34]. Scalable Hadoop and data analytics tools 
services are offered by few companies that position themselves 
as Big Data companies such as Cloudera, [35] and few others 
[36]. 

VII. SECURITY INFRASTRUCTURE FOR BIG DATA 

A. Security and Trust in Cloud based Infrastructure 

Ensuring data veracity in Big Data infrastructure and 
applications requires deeper analysis of all factors affecting 
data security and trustworthiness during their whole lifecycle. 
Figure 5 illustrates the main actors and their relations when 
processing data on remote system. User/customer and service 
provider are the two actors concerned with their own 
data/content security and each other system/platform 
trustworthiness: user wants to be sure that their data are secure 
when processed or stored on the remote system.  

 

 
Figure 5. Security and Trust in Data Services and Infrastructure. 

Figure 5 illustrates the complexity of trust and security 
relations even in a simple usecase of the direct user/provider 
interaction. In clouds data security and trust model needs to be 
extended to distributed, multi-domain and multi-provider 
environment.  

In the general case of multi-provider and multi-tenant e-
Science cooperative environment, the e-SDI security 
infrastructure should support on-demand created and 
dynamically configured user groups and associations, 
potentially re-using existing experience in managing Virtual 
Organisations (VO) and VO-based access control in Computer 
Grids [37, 38].  

Data centric security models when used in generically 
distributed and also multi-provider e-SDI environment will 
require policy binding to data and fine grained data access 
policy that should allow flexible policy definition based on the 
semantic data model. Based on the authors’ experience, the 
XACML (eXtensible Access Control Mark-up Language) 
policy language can provide a good basis for such functionality 
[39, 40]. However support of the data lifecycle and related 
provenance information will require additional research in 
policy definition and underlying trust management models. 



B. General Requirements to Access Control Infrastructure 

To support secure data processing, the future SDI should 

be supported by a corresponding Access Control and 

Accounting Infrastructure (ACAI) that would ensure normal 

infrastructure operation, assets and information protection, and 

allow user identification/authentication and policy 

enforcement in distributed multi-organisations environment.  

Moving to Open Access [21] may require partial change of 

business practices of currently existing scientific information 

repositories and libraries, and consequently the future ACAI 

should allow such transition and fine grained access control 

and flexible policy definition and control. 

Taking into account that future SDI should support the 

whole data lifecycle and explore the benefit of the data 

storage/preservation, aggregation and provenance in a large 

scale and during long/unlimited period of time, the future 

ACAI should also support all stages of the data lifecycle, 

including policy attachment to data to ensure persistency of 

the data policy enforcement during continuous online and 

offline processes. 

The required ACAI should support the following features 

of the future SDI: 

 Empower researchers (and make them trust) to do their 

data processing on shared facilities of large datacentres 

with guaranteed data and information security  

 Motivate/ensure researchers to share/open their research 

environment to other researchers by providing tools for 

instantiation of customised pre-configured infrastructures 

to allow other researchers to work with existing or own 

data sets. 

 Protect data policy, ownership, linkage (with other data 

sets and newly produced scientific/research data), when 

providing (long term) data archiving. (Data preservation 

technologies should themselves ensure data readability 

and accessibility with the changing technologies). 

VIII. FUTURE RESEARCH AND DEVELOPMENT 

The future research and development will include further 
Big Data definition initially presented in this paper. At this 
stage we tried to summarise and re-think some widely used 
definitions related to Big Data, further research will require 
more formal approach and taxonomy of the general Big Data 
use cases both in science and industry. 

Although currently proposed SDLM definition have been 
accepted as the European Commission Study recommendation 
[13], we plan to move further definition of the related metadata, 
procedures and protocols to the Research Data Alliance (RDA) 
[41] community recently established to coordinate 
standardisation in the area of research data.  

As a part of the general infrastructure research we will 
continue research on the infrastructure issues in Big Data 
targeting more detailed and technology oriented definition of 
SDI and related security infrastructure definition. Special 
attention will be given to defining the whole cycle of the 
provisioning SDI services on-demand, specifically tailored to 
support instant scientific workflows using cloud IaaS and PaaS 
platforms. This research will be also supported by development 
of the corresponding Cloud and InterCloud architecture 

framework to support the Big Data e-Science processes and 
infrastructure operation. 
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